If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-14x-960=0
a = 7; b = -14; c = -960;
Δ = b2-4ac
Δ = -142-4·7·(-960)
Δ = 27076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27076}=\sqrt{4*6769}=\sqrt{4}*\sqrt{6769}=2\sqrt{6769}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{6769}}{2*7}=\frac{14-2\sqrt{6769}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{6769}}{2*7}=\frac{14+2\sqrt{6769}}{14} $
| 10-10x-6-5x=11 | | 7x^2+14x-960=0 | | 8m-6(m+12)=86 | | 6-7x=2x-12 | | X+(x(.5))=51 | | Y=6m-7 | | 5+-2=-32a | | 8y+4+4y+8=64 | | 43-1=4x+7 | | 5a=2a+0,5 | | 3(c-10)+35=5(c+1)-2c | | 20x-8=12x-88 | | 3-2(x+4)+9=22 | | 5/5=1/6+d | | 3b-13+4b=7b+1b= | | 3b-13+4b=7b+1=b | | 8x=+1=1 | | 5=4r-3r | | 96=6x-30 | | -7x+7–5x–9=34 | | 74=9x+11 | | 1.8x-32=x | | a+5(a-1)=10a-4(a+2) | | 7(2.c-1)-3=6+6.c | | 5^x+3=5^2 | | 0.3(2w+10=0.6w+3 | | 7x/2+3=10 | | 3(c-10+35=5(c+1)-2c | | -2(x+4)+9=22 | | 2(j-13)=74 | | 4x-(19+8x)=3(2x-3)-14 | | p/4-4=1 |